skip to main content


Search for: All records

Creators/Authors contains: "Tassiulas, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intrusion detection through classifying incoming packets is a crucial functionality at the network edge, requiring accuracy, efficiency and scalability at the same time, introducing a great challenge. On the one hand, traditional table-based switch functions have limited capacity to identify complicated network attack behaviors. On the other hand, machine learning based methods providing high accuracy are widely used for packet classification, but they typically require packets to be forwarded to an extra host and therefore increase the network latency. To overcome these limitations, in this paper we propose an architecture with programmable data plane switches. We show that Binarized Neural Networks (BNNs) can be implemented as switch functions at the network edge classifying incoming packets at the line speed of the switches. To train BNNs in a scalable manner, we adopt a federated learning approach that keeps the communication overheads of training small even for scenarios involving many edge network domains. We next develop a prototype using the P4 language and perform evaluations. The results demonstrate that a multi-fold improvement in latency and communication overheads can be achieved compared to state-of the-art learning architectures. 
    more » « less
  2. WiFi is increasingly used by carriers for opportunistically offloading the cellular network infrastructure or even for increasing their revenue through WiFi-only plans and WiFi ondemand passes. Despite the importance and momentum of this technology, the current deployment of WiFi access points (APs) by the carriers follows mostly a heuristic approach. In addition, the prevalent free-of-charge WiFi access policy may result in significant opportunity costs for the carriers as this traffic could yield non-negligible revenue. In this paper, we study the problem of optimizing the deployment of WiFi APs and pricing the WiFi data usage with the goal of maximizing carrier profit. Addressing this problem is a prerequisite for the efficient integration of WiFi to next-generation carrier networks. Our framework considers various demand models that predict how traffic will change in response to alteration in price and AP locations. We present both optimal and approximate solutions and reveal how key parameters shape the carrier profit. Evaluations on a dataset of WiFi access patterns indicate that WiFi can indeed help carriers reduce their costs while charging users about 50% lower than the cellular service. 
    more » « less
  3. In-network caching constitutes a promising approach to reduce traffic loads and alleviate congestion in both wired and wireless networks. In this paper, we study the joint caching and routing problem in congestible networks of arbitrary topology (JoCRAT) as a generalization of previous efforts in this particular field. We show that JoCRAT extends many previous problems in the caching literature that are intractable even with specific topologies and/or assumed unlimited bandwidth of communications. To handle this significant but challenging problem, we develop a novel approximation algorithm with guaranteed performance bound based on a randomized rounding technique. Evaluation results demonstrate that our proposed algorithm achieves nearoptimal performance over a broad array of synthetic and real networks, while significantly outperforming the state-of-the-art methods. 
    more » « less
  4. The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers. 
    more » « less
  5. Nowadays, there is a fast-paced shift from legacy telecommunication systems to novel software-defined network (SDN) architectures that can support on-the-fly network reconfiguration, therefore, empowering advanced traffic engineering mechanisms. Despite this momentum, migration to SDN cannot be realized at once especially in high-end networks of Internet service providers (ISPs). It is expected that ISPs will gradually upgrade their networks to SDN over a period that spans several years. In this paper, we study the SDN upgrading problem in an ISP network: which nodes to upgrade and when we consider a general model that captures different migration costs and network topologies, and two plausible ISP objectives: 1) the maximization of the traffic that traverses at least one SDN node, and 2) the maximization of the number of dynamically selectable routing paths enabled by SDN nodes. We leverage the theory of submodular and supermodular functions to devise algorithms with provable approximation ratios for each objective. Using realworld network topologies and traffic matrices, we evaluate the performance of our algorithms and show up to 54% gains over state-of-the-art methods. Moreover, we describe the interplay between the two objectives; maximizing one may cause a factor of 2 loss to the other. We also study the dual upgrading problem, i.e., minimizing the upgrading cost for the ISP while ensuring specific performance goals. Our analysis shows that our proposed algorithm can achieve up to 2.5 times lower cost to ensure performance goals over state-of-the-art methods. 
    more » « less